FRONTAL REGIMES IN THE DYNAMICS OF THE PHYSICAL ADSORPTION OF MIXTURES

L. K. Filippov UDC 541.183

Analysis of the frontal regimes in the dynamics of physical adsorption of multicompo-
nent mixtures for various types of theoretical models in which provision is made for a vari-
ety of interphase mass-exchange mechanisms is of theoretical and practical interest from
the standpoint of choosing optimum regimes for adsorption separation of mixtures [1]. For
the simplest theoretical model of the dynamics of adsorption (the equilibrium model of ideal
expulsion), which is described by a narrowly defined hyperbolic system of quasilinear equa-
tions, the analysis of the frontal regime in the majority of cases [2, 3] is carried out
with the aid of the Lax conditions [4-6]. For the theoretical models of the dynamics of
mixture adsorption in which provision is made for the smearing factors, and these are de-
scribed by a combined quasilinear system of equations, in [7] we have derived the conditions
for the realization of the frontal regimes which depend not only on the form of the adsorp-
tion isotherms, but also, as in the case of the simplest model for hyperbolic equations,
on the values of the mass-exchange coefficients characterizing the various mechanisms of
interphase mass exchange. The hyperbolic systems of equations for adsorption dynamics in
the case of mixtures may tolerate the existence of several (nonunique) frontal regimes with-
in the framework of the Lax conditions [8].

In the present study we deal with the problem of selecting a single frontal regime
through analysis of the analytical solutions for the equations of mixture adsorption dyna-
mics, with provision for the approximate model equations which take into consideration the
interphase mass exchange.

1. The frontal dynamics of the physical adsorption of multicomponent mixtures is de-
scribed by a system of quasilinear equations for the material balance and the kinetics of
the interphase mass exchange for each of the components in the mixture [7]:

Ocm/Ot + U B0z + 8 gm/0t = D, Do%c,/022, &= (1 — 0)/o, (1.1)
r=1 1.

Ogm{ot = kgl Gup [ (6)— @], 1< m, k<n.

Here cp is the concentration of the m-th component of the mixture in the moving phase; qp is
the concentration of the m-th component of the mixture in the adsorption phase; f,(¢) repre-
sents the equations of the adsorption isotherms; u is the linear velocity of the flow; Dy L
is the coefficient of diffusion (m = k) and mutual diffusion (m # k); Gpi is the coefficient
of interphase mass exchange; n is the number of components in the mixture.

For the simplest equilibrium (1/Gyy = 0) model of an ideal expulsion (Dp(%) = 0), sys-
tem (1.1) changes to the hyperbolic:

den, /0t -+ ude,, oz 4 80f (el ot = 0,
1<<m<n,

which we write in matrix form
acm/at + uBmhach/z?z = 0,

- 1.2)
Bl = Enn + Sfmar Jma = 8fmfden (
(Epk is the unit matrix). System of equations (1.2) for the initial and boundary conditions

¢m (0, 1) = Coms tm (2, 0) = ", Com, € = const (1.3)
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permits the existence of two frontal regimes: a frontal regime of a type of concentrated
traveling waves (shock waves)
cm(z,t) = cm(y)v y=1z—uwt + Yoir Yo; = const, (1.4)

and a frontal regime of diffusion-type concentrated waves (rarefaction waves)
Cm(Z,t) =Cn (E), E = Z/t- (1.5)

For the adsorption isotherms fm(c) with monotonic eigenvalues ug the matrix fp of the condi-
tion for the existence (the Lax condition) of regimes such as (1.4) and (1.5), respectively,
have the form [4, 6]:

Vi (D) > w; > v; (€0D),  Com > Cms
AP e (y=—00), caV =cp(y=+ o), 1<in,
v; (c=D) < v; (¢) < 03 (€ D), el = cp (E~0),
oV =cm (E—>o0), v;=u/fl+ Bum—itnh

(1.6)

where vi are the eigenvalues of the matrix uBpy [see (1.2)]. The velocity wi is found from
the Hugoniot equations [6]:

w; == u/(1 + 6[fm(c)]/[01n])7
lem] = cnly = —o0)— cm(y = -}-o0), : (1.7)
Fm©)] = frulely = “‘°°))"‘ Fmle(y = H-o00)).

According to (1.6), for the dynamics of mixture adsorption, system (1.2) may permit
several frontal solutions such as (1.4) [8]. Therefore, the question of choosing a single
physically realizable frontal regime of the (1.4) and (1.5) type within the scope of the
Lax conditions remains open. For the solution of this problem let us examine a system of
equations for the dynamics of mixture adsorption in which provision is made for the approxi-
mate equations which take into consideration interphase mass exchange:

Fem)Ot + 1 8]0z + 8 0fm (c)/0t = D) Tmpd2ca/0t2, (1.8)
h=1

which for isotherms of a specific form [see §1.9)] allow for an analytical solution. System
(1.8) has been obtained out of (1.1) for Dpy 2) =0 and the approximate model equations for
the kinetics of interphase mass exchange

n n
gm = fm(c)— kZ Tmp0cy/0y  Tmp = EZI G;éfgh-
=1 =

From the physicochemical standpoint [1], the equations for the mixture adsorption isotherms
fn(c) must satisfy the conditions fy(e) 2 0, £ > 0, fr < 0, m # k. For quasilinear mix-
ture adsorption isotherms

fm(c)=f0m+k}]Kmhck, Kmm>0, Km<0, mstk (1.9)
=1

and systems (1.1) and (1.8) it is possible to construct an analytical solution. For non-
linear isotherms of the form

n )
fml€) = kgtm + 2 bmgtmeg, Ky =0, (1.10)
=1

when

Tk = TEmn, 1> 0, (1.11)
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and systems (1.8), (1.11) for the nonsingular matrix by an analytical solution can also
be found.

The quasilinear system (1.1) and system of equations (1.8) may allow for a frontal re-
gime of the diffusion type of concentrated waves for which
Cm(Z, t) = cm(g’ 1), g = Z'/tv 1 <m <n. (1.12)

In the previous solution the quantity t is taken as the parameter. As t - « the solution
of (1.12) tends asymptotically to the self-similar solution (1.5).

2. Let us examine the analytical solution of system (1.1), (1.8) for isotherms of the
form of (1.9) and (1.10). The analytical solutions of system (1.1) for the quasilinear iso-
therms in (1.9) are found by means of the Laplace integral transform over time. After the
transformations the asymptotic (z, t -+ «) solution is written as follows:

em (3, B =1 /Zkzj]l Ay erie (yg)),
¥ = (zwy — 1)/[2 (B2 ] (U< m, &, i< ), (2.1)
erfc (2) = 1 —a—1/2 fexp (— ¥y dt.
0
To each wave index i (1 € i < n) we have corresponding eigenvalues of bk(i) for the matrix

Hg;):( DX Ju? + 6 2 Gz fs})/u and the eigenvalues wj of the matrix uBpy, which we will number

s=1
in the following manner: »
W< Wy <<wy<..<<w,{lgi<gn),
wy = ul(1 4+ dn-1sn)
(pp are the eigenvalues of the matrix Kgs) It follows from the earlier solutions that the

(2.2)

asymptotic solutions of (2.1) for (1.1) in the presence of (1.9) coincide with the asymptotic
solutions of system (1.8), provided that the quantities by (1) equal the elgenvalues of the
matrix Typg/u, and they coincide with (1.8), (1.11), prov1ded that = —‘ulnaxbl Strictly

speaking, a frontal regime of the type of (1.4) occurs only for (1.2), wh11e in the case
of (1.1), according to (2.1), nonsteady regimes exist.

Let us take note of the specific unique features encountered in the frontal dynamics
of adsorption for (1.9). 1In the case of nonlinear convex isotherms [for example, (1.10)
with byp < 0) the strongly adsorbed component of the mixture [with the lowest value of by,
in (1.9), for example b;;] in adsorption is 'absorbed completely," since the concentratlon
of the first component of the mixture for the frontal regime, moving at a velocity w;, changes
in the interval c,; 2 ¢; 2 ¢;°. The quantity w, in this case depends on the concentration
of the mixture components [see (1.7)]. For (1.9) the strongly adsorbed component of the
mixture (for example, the first) is independent of the mixture-component concentrations [see
(2.2)1, and in order to match (2.2) to (1.7) the concentration of the first component changes
in the interval cyy € c; s c;(3), ¢;(1) > ¢,% The quantities cp'k) are found from Egs.
(1.7), which are in agreement with (1.3).

Let us examine the solution of system of equations (1.8), (1.11) for the nonlinear
isotherms (1.10). For the nonsingular matrix Bpy

= N Bugr (I<m, k<) (2.3)
E=1

the coefficients are chosen SO that for each fixed value of m (1 < m € n)in X BrtbyBy;
7,8=1

Bymgi8m only the diagonal terms of quadratic form will be different from zero, which will
be the case when

g?nbm = 2 B;}brkBrmmagEn 0,

7,h=1
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2 erbrkBrJBkmgggm—-O (m=£~j, 1< m, k, r, i<n).

ryh=]

In each case system (1.8), (1.11) "breaks down'" into individual equations:
0008w/ 0t + UDg 3z + Bbmdg, 2ot = T3 g, 01,

2.4
Qy = 1 + 6k01 gm(Z, O) = gm0= COIlSt, gm(ov t) = hm(t)- ( )
With substitution
8 = Em® + And(1n Gp)/0t, Ay = —7/(8by,) (2.5)
the nonlinear equation (2.4) reduces to the linear equation
@g0G /08 -+ udG /02 = 10°G /382 (1 << m < ), (2.6)
Gm(z, 0) = 0, Gp(0, 1)/G° = exp (bmt), b = (om — Em" N Am, o
hpy(t) = const;
t
G (0, £)/G® = exp (f (B (2) — %) dx), b (7) = var. (2.7)
0

For zero initial conditions when hp(t) = const the solution of Egqs. (2.6), with the aid of
the Laplace integral transform with respect to the coordinate (s is the parameter of the
integral transform), is obtained in the form

Grols, t) = G°[exp (bmt)— exp (A2)1/(s — sp),
Sm = bm(bmt — ay)lu,
A = ay/(21)— la/(41?) + us/t]'/?,
G (3, )/G° = exp (bmt + Sm7) — (1/2) exp [at (1 — dm)/(27)] erfc (25) —
— (1/2) exp [at (1 + dm)/(27)] exfe (22), dum = (1 4 4usm/a3)*”?,
2D = (t — agadmw)(bzt/u)?, 22 = (¢ + agzdniu)/(daviu).

(2.8)

When we take into consideration the expression for Gp(z, t) and relationships (2.5),
according to (2.3), we find the analytical solutions of system (1.8), (1.11) for nonlinear
isotherms (1.10). By means of these we can describe the frontal regimes consisting of con-
centrated waves such as (1.4) and (1.12), for multicomponent mixtures in the presence of
isotherms (1.10).

As an example, let us analyze the frontal regimes of a two-component mixture (n = 2)
with the isotherms

f1 = dey — e2— ci6y, fo = bep — 0.9¢¢, — 1.2¢5% (2.9)

The hyperbolic system of equations (1.2) for isotherms (2.9) within the scope of conditions
(1.6) allows for the existence of two frontal regimes (nonsingularity), consisting for each
wave index i (1 < i < 2) of concentrated waves of the (1.4) and (1.5) type.

The distribution of concentrations along the z axis for a regime of the (1.5) type. is
found from the following system of ordinary differential equations:

demfde, = TP (P () < m<n), E=vi() (1<i<n), (2.10)

derived from (1.2) and (1.5). Here rm(i) are the proper eigenvectors of the matrix uByi for
the eigenvalues of vy (1 £ i < n).

According to (1.6), (1.7), and (2.10), for isotherms (2.9) with cyy = 1, ¢;% = 0,. ¢4, =
0.1, c,° = 0 we have

Regime I:

i=1: v] =u/(l + 2.94638), v{ =u/(1 + 3.03168),
D =1,003, 0=0, wy=uw/(l+2.980), vy >wy>v; (2.11)
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i=2: vy =u/(l + 1.8148), vi =u/(l +48), w,=u/(l+ 2.9078),
vg > w,>vy, V=0 -

Regime IT

i=1: v =u/(1 + 2.94638), v =u/(1 + 2.85398),

V=0, o =1146, o7 <v,(c)<vy; (2.12)
i=2: vy =u/(1 4+ 1.258), v§ =u/(1 + 46),

wy, = u/(1 + 2.6258), v; >w,>vi, ¥ =0.

The Lax conditions (1.6) for frontal regimes (2.11) and (2.12) are fulfilled and there-
fore for the indices i = 1 and 2 we achieve regime I in the form of traveling concentrated
waves of the (1.4) type. For regime II, with i = 1, there exists an expanding concentrated
wave of the type of (1.5), while with i = 2 we have a traveling concentrated wave similar
to (1.4). Let us note that the eigenvalues of yp for the matrix fj; in the case of isotherms
(2.9) for a two-component mixture are quantities that are both real and different. The eigen-
values of py(c,, c,) for isotherms (2.9) are monotonic functions of ¢;, c,. It has thus
been demonstrated that for a two-component mixture (n = 2) and for monotonic eigenvalues
of py with cp® = 0 (1 < m < n) the hyperbolic system of quasilinear equations (1.2) allows
the existence of several solutions. Let us note that when c¢;,°® # 0 (1 < m < n) the hyper-
bolic system (1.2) has a solitary solution consisting for each index i {1 £ i < n) in the
presence of monotonic functions py (1 < m < n) of a combination of solutions such as for
the concentrated waves (1.4) and (1.5). Indeed, with the aid of Egs. (1.7) and (2.10) for
each index i (1 < m < n) we can find arcs [solutions cp = cp(c;) (2 < m < n)], which uniquely
relate the points cypy, cp® (1 € m < n).

In the case of the nonconservative hyperbolic system (1.2) for a mixture of three com-
ponents (n = 3) the literature (in particular, see [6]) points up the possibility for the
existence of several regimes consisting of self-similar solutions such as (1.4) and (1.5).
The above-cited analysis for a two-component mixture (n = 2) provided the initial proof for
the existence of several regimes in the case of a conservative hyperbolic quasilinear sys-
tem of equations in the presence of mixture adsorption isotherms with monotonic eigenvalues
of yp (1 < m < 2).

Let us analyze the solutions of the quasilinear system (1.8), (1.11) for isotherms (1.10).
The system allows the existence of type I and II frontal regimes, which when hy(t) = const
are described by the solutions for (2.3) and (2.8), and with z, t > « changing to the asymp-
totic, consist of a combination of concentrated waves such as (1.4) and (1.12). Specifying
the constants gop, 8y’ in (2.3) and (2.8), we can construct analytical solutions correspon-
ding to regimes I and II, consisting in the case of z, t » «» of asymptotic solutions such
as (1.4) and (1.12). Such an analysis shows the stability of nonidentical (two) solutions
of the system of quasilinear equations (1.8) and (1.11), since as t > 0 it tends monotoni-
cally to the solutions of (2.11) and (2.12).

Within the framework of the mathematical formulation of the problem dealing with the
dynamics of mixture adsorption, the question dealing with the selection of a single regime
remains open. In order to resolve this question it is essential that we use different con-
cepts, in particular, physicochemical concepts. Based on the physicochemical concepts for
the selection of a single physically realizable frontal regime in the dynamics of mixture
adsorption (cyy > cy’) additional extremum conditions have been derived in [8]:

v; = min (min v$®; min w‘is)) um<n), (2.13)
§

v, W g
according to which, for the frontal dynamics of adsorption, a regime with the lowest value
for the velocity is physically attained. Conditions (2.13) have the following physicochem-
ical sense: for the frontal dynamics of mixture adsorption it is the components of the
mixture with the greatest value of adsorbability that are primarily absorbed, which corre-

sponds to the largest eigenvalue of g (1 < g £ n) or, according to (1.6), to the lowest
velocity vy (1 < i < n).
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For isotherms (2.9), according to the extremum condition (2.13), regime I is realized,
since w; = u/(1 + 2.988) < vy~ = u/(1 + 2.948). These results are also confirmed by means
of numerical experimentation, i.e., integration with a computer of the quasilinear system
(1.8), (1.11), as well as confirmed by system (1.1), (1.2).

3. Let us examine the solution of system (1.8) for a matrix Tmk of arbitrary form.
Analysis of these solutions is of great applied interest for this matrix, since by means

of such a system it becomes possible analytically for an entire series of important particu-
lar cases approximately to describe the processes of adsorption mixture separation in labora-

tory and industrial equipment, as well as to evaluate the accuracy of the approximate ana-
lytical formulas for the calculation of the parameters characterizing the processes of ad-
sorption mixture separation.

In a number of cases, the experimental mixture adsorption isotherms can be described
by approximate analytical expressions of the form

fm(€) = kmem + 2 bmgtmeg (1 <<m, g<n). (3.
g=1

For the nonsingular matrix Ty, system (1.8), with consideration of the substitution

n
em= 2 Amg, (1<m, k<n), G-
E=1
changes into the following:
Ogm/Ot + U 0gn/dz + 8 D) Amt 8f; (€)/0t = Tm0?gml B2, (3.

§=1
since the eigenvalues of the matrix tpp and Amg'ngjAjk coincide (ty, are the eigenvalues

of the matrix Tp;). For isotherm (3.1) system (3.3) with consideration of the substitution

1)

2)

3)

n
&r = 2 Lypsp U<k p<n) (3.4)

p=1

has the form

ay O5p/0t + 1w 8s,/02 + & X Hypd (855,)/08 = T20%8,/01%,
b4

=1 (3.5)

Hkpr = 2 Lh_zlAi-rr%bmkAmjL]pAhlLlr’ ak == 1 + 6[‘52.

i,m,j,l=1

Using

sj:;pjm 1<ii<n), .
==1

we write system (3.5) as
Ca0r;/0t + udr;/dz + 8b; 0r5 [0t = vo; 0°r;j0t* (1<K m)s
if we select the coefficients of the matrices Ank s Lkp’ Pjg so that

r?bi = 2 Pj_hlﬂhprppjprjr? 9& 0,

R,p,7=1

S PRlHupPpiPrris =0 (j=s, 1<k, p, r, i< n).
k,p,m=1

In accordance with the above, the solution of the system of equations (1.8) for Coms cm° =
const in the case of the isotherms from (3.1) can be found on the basis of transformations
(3.2), (3.4), and (3.6), with consideration of the solutions for (2.8) for various ay, bj,
Tm (L £k, j, m < n).

6)
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The analytical solutions obtained in the manner described here make it possible to ana-
lyze the entire multiplicity of frontal regimes in the multicomponent (n 2 3) dynamics of
adsorption (cgp > cp®) and desorption (cop < c¢p°) for various values of the concentration

[¢]
Coms Cp’ (1 s m<mn).
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A SET OF STEADY-STATE SOLUTIONS OF THE EVOLUTION EQUATION
FOR PERTURBATIONS IN ACTIVE-DISSIPATIVE MEDIA

0. Yu. Tsvelodub UDC 532.51

Steady-state periodic solutions have been calculated numerically. It is demonstrated
that an even set of such solutions comes about as a consequence of a successive cascade of
bifurcations.

In recent times, researchers into the wave processes in nonconservative media have ex-
pressed great interest in an equation of the form

H, +4HH, + H,, + H ., = (. (1)

This interest is generated by the fact that in terms of form it is one of the simplest non-
linear equations which could possibly be imagined, so that with its appearance in the simulation
of the nonlinear behavior of perturbations for a rather large class of active-dissipative
media it functions for the latter in as extensive a role as the well-known KdV equation for
conservative media.

Thus, in the description of the waves at the surface of a liquid film flowing freely
down an inclined plane, such an equation has been derived in [1, 2], for the counterflow
motion of a film and a gas we find the derivation of such an equation in [3], and for the
perturbations at the boundaries separating two viscous liquids in a horizontal channel, the
derivation of the equation is to be found in [4].

Linear stability analysis demonstrated that the trivial solution H = 0 of Eq. (1) is
unstable relative to perturbations of the form exp [ia(x — ct)] with wave numbers a < 1 (per-
turbations with a > 1 are attenuated). The growth of such perturbations over time can be
curtailed through the action of nonlinear effects, as a result of which steady-state non-
linear regimes are formed.
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